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Off -shell representations of supersymmetry with central 
charges 

B L Rands and J G Taylor 
Department of Mathematics, King’s College, London, UK 

Received 27 July 1982 

Abstract. We determine the super-spin and internal symmetry Casimirs for the four- 
dimensional global extended supersymmetry algebra with central charges, for both the 
non-degenerate and degenerate case (‘spin-reducing’), and show how these two cases are 
related. The nature of the off-shell symmetries and representations on superfields are 
analysed. The ‘super-tableau calculus’ is extended to the central charge case, and the 
constraints on superfields required to produce the fundamental irrep and others are 
determined (for even N ) ;  prepotentials are discovered for N = 2 .  

1. Introduction 

One of the outstanding problems in the construction of a unified theory of the forces 
of nature including gravity is that of cancelling the ultraviolet divergence arising in 
quantum calculations. Supersymmetry appears to give a hope of incorporating such 
cancellation, though this has only yet been shown explicitly at the one- and two-loop 
level (Duff 1982). In order to use most efficiently the Bose-Fermi symmetry producing 
such cancellations, superfield techniques have been developed for the case of un- 
extended supersymmetry (Grisaru 1982). In order to preserve supersymmetry 
explicitly in the extended cases and also achieve maximal use of the cancellation 
mechanism, it is necessary to have a suitably extended superspace version of the 
extended supersymmetric theory. Thus for N-extended supergravity (N-SGR) it 
appears most efficient for ultraviolet divergence cancellation to have a maximally 
extended superspace formulation. However, in spite of many efforts to achieve such 
a theory this has so far proved impossible for N 2 3. 

The existence of the ‘N = 3 barrier’ has been explained recently (Rivelles and 
Taylor 1981, Taylor 1982a) in terms of counting of fermion modes available in the 
irreducible representations (irreps) of N-extended supersymmetry (N-susu).  In order 
that the correct physical spectrum for N-SGR be achieved from a set of such irreps, 
certain field redefinitions (Rivelles and Taylor 1982a) are necessary among the field 
components of the irreps. The N L 3 no-go theorems of Rivelles and Taylor (1981) 
and Taylor (1982a) were based on the impossibility of using such field redefinitions 
so that all fermions other than the desired physical fields could be combined into 
auxiliary spinors and so have vanishing value on-shell by virtue of their field equations, 
This impossibility was shown explicitly (Rivelles and Taylor 1981, Taylor 1982a) for 
N = 3 and 4, though more recently the proof has been considerably simplified and 
extended to higher dimensions (Rivelles and Taylor 1983a), with the result that no 
explicitly supersymmetric off-shell version of N-SGR can be constructed for N 3 3. 
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1006 B L Rands and J G Taylor 

The proof of the N a 3 no-go theorem depends on certain assumptions, the most 
crucial of which is that no central charges are present in the N-SUSY algebra .Y”. 
Such charges commute with all operators of Y N  except the internal symmetry gen- 
erators, and can modify the representation content of 9” considerably in the degener- 
ate or ‘spin-reducing’ case when the irreps of .9”,2 become relevant (for N even). 
The use of such irreps can circumvent the N a 3 no-go theorem, and one of us 
produced (Taylor 1981a, b) candidate irreps for a satisfactory off -shell formulation 
of N-SGR for N = 3, 4, 5 ,  6 and 8. These candidates were somewhat schematic and 
required an analysis of the SUSY transformation laws of the redefined fields in order 
to show that there are no non-local terms arising (which would prevent non-linearisa- 
tion). Such an analysis has now been given in detail for N = 1 (Rivelles and Taylor 
1982b, 1983b) and 2 (Rivelles and Taylor 1983c), with new auxiliary field sets being 
discovered by this approach. In particular, certain of the N = 2 solutions involved 
central charges, so are interesting analogues of the situation we must meet for N 2 3. 
In order to extend this programme to such higher values of N, the component methods 
used for N = 1 and 2 become rather cumbersome due to increasing numbers of 
component fields in irreps of YN: the ‘component explosion’. Although we still hope 
to analyse N = 4 SGR by such techniques, the case of N = 8 (and N = 4 super-Yang- 
Mills; N = 4 SYM) appears very difficult, and we will have to adapt superfield techniques 
to the problem. 

Much is known about the representation of N-SUSY on superfields in the absence 
of central charges (Bufton and Taylor 1983a, Ferrara et a1 1981, Nahm 1978, Pickup 
and Taylor 1981, Rittenberg and Sokatchev 1981, Salam and Strathdee 1974). We 
wish to develop a similar understanding in the presence of central charges. There is 
a growing but rather scattered literature on the subject (Fayet 1975, 1979, Sohnius 
1978, Sohnius et a1 1981, Taylor 1980), especially for the case of N = 2. We wish 
to give here a complete account of the representation theory of central charge SUSYS 

on superfields which will allow application to the programme of constructing N-SGRS 
f o r N a 3 .  

One approach to central charges is to regard them as components of momenta in 
extra dimensions. This possibility leads to the use of a higher-dimensional framework 
in which to build N-SGRS ab initio. This is particularly appealing since then only lower 
N values need to be discussed; in d = 11 only N = 1 is possible. In spite of the fact 
that much interest is presently being engendered by the resuscitation of Kaluza-Klein 
theory (Salam and Strathdee 1981), and especially the addition of spinors (Witten 
198 1) and the possible and ultraviolet divergence cancellations in these higher 
dimensions (Duff and Toms 1982), we will not follow the higher-dimensional trail at 
this point. There are various reasons for this. 

The first point is that we are specifically interested in the quantisation of N-SGR 
in four dimensions. The quantum properties of higher-dimensional theories are of 
interest, but we are here trying to exploit the expected cancellations due to N-SUSY 
in four dimensions alone. Thus certain features of the classical theory, such as the 
hidden symmetries, may be usefully analysed by means of higher dimensions. 
However, the quantisation of the four-dimensional theory requires its explicit con- 
struction as a classical theory in that number of dimensions before quantisation is to 
be achieved. 

Another reason for restricting ourselves to four dimensions is that the ultraviolet 
divergence cancellation known to occur on-shell for N = 4 SYM in d = 4 up to three 
loops (Avdeev et a1 1980, Caswell and Zanon 1980, Grisaru et a1 1980) does not 
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seem to do so even at the one-loop level for N = 1 SYM in d = 10 (Ragiadakos and 
Taylor 1982). This is a hint that the ultraviolet divergences of quantised higher- 
dimensional super-theories may have the virulence expected of them and that the 
four-dimensional cancellations do not persist in higher dimensions. 

A third and related point is that the construction of off-shell N-SGRS in higher 
dimensions also has difficulties. The higher-dimensional no-go theorems (Rivelles 
and Taylor 1983a) show that there is only one case in which no central charges are 
needed, and that is N = 1 SGR in d = 10. This corresponds to N = 4 SGR plus six 
N = 4 SYMS in d = 4; a linearised superfield version of this possibility has already been 
presented (Howe et a1 1982). However, N = 1 SGR in d = 11 requires central charges 
in its algebra in order to obtain an off-shell theory. This clearly complicates the 
situation, and we can regard our analysis of central charges in d = 4 as a preliminary 
to that fo rd  = 11. 

A further feature in favour of working directly in d = 4 is that the central charge 
structure can be made explicit. If we consider this structure in the higher-dimensional 
framework, it is necessary to analyse how a suitable dimensional reduction can be 
achieved to produce the required structure in d = 4 .  At least two central charges 
appear necessary for N = 4 SGR (Bufton and Taylor 1983b), and no known dimensional 
reduction can achieve this in a general manner (Sohnius et a1 1981). We can regard 
our analysis as giving hints as to how higher dimensions may be entering by starting 
from the d = 4 theory with suitable central charges and interpret the corresponding 
theory as coming from one in a higher dimension: 

Some of the ideas used here have already appeared elsewhere (Taylor 1982b), 
but we will present a self-contained account which has a different emphasis. In 
particular, we will try to develop properties parallel to those of the non-central charge 
case. We start our programme by constructing the Casimirs of the N-SUSY algebra 
with central charges. This is done for the PoincarC and internal symmetry algebras 
in 8 2. We find that there are two cases to consider, already known in the literature 
(Sohnius 1978, Sohnius et a1 1981, Taylor 1980), which we call the non-degenerate 
and degenerate cases. The former is discussed in detail in § 3 and the latter in 5 4. 
We develop the theory of representations on superfields (SFS), and in particular extend 
the super-tableau calculus so as to give the constraints for various irreps in suitable 
SFS. We solve these in § 5 in terms of unconstrained prepotentials. We discuss future 
problems in the final section. 

2. Casimirs for central charge SUSY (non-degenerate) 

I The N-susu algebra 9, will be chosen to have chiral SUSY generators Sa+ and 
complex conjugates Sa- l ,  with 1 s I s N. The other generators are J," and P, constitut- 
ing the PoincarC algebra and internal symmetry generators which we will introduce 
shortly. The anticommutators of the chiral generators are 

where C is the charge conjugation matrix and 2" are a set of iN(N-1) complex 
generators commuting with Sa+, I So-[, P,, and JWY. We note also the conjugate of ( l b ) :  

[Sa-I ,  SP-J+ = 2c,-P-z*1m 
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and also use 
[J,,, s,+']- = i(u,S+ I )a+ 

1 where we take the metric g," =diag(l, -1, -1, - l ) ,  and U," =a[y , ,  yY] - - .  We wish to 
modify the Pauli-Lubanski vector W, = 1 JwAPu in a similar manner to that when 
2'' = 0 by addition of further terms to produce a conserved vector C which commutes 
with Sa+'. The available real vectors are K ,  = (S:y,,S-l -$-1y ,8+ ) and J,  = 
pY(S+lu,YS=lZ*'m -S-lu,vS-mZfm) (where y,' = y ,  - p p p / p 2 ~ ~ ~ p " y , f  = 0), so we con- 
sider the general linear combination C, = W, -aK, - ( p / p  )J,. From (1) we have, 
after some algebra, that 

I 

[C,, Sa+']- = i ( y , , p s+ l )a* [ ( l  -8a)S'r + ( 4 ~ / p 2 ) 2 * f m Z m i ] + ( y , ~ S - l ) a + Z " ( 4 a  -2P).  (2) 

In order for (2) to vanish we require 
p = 2 a  Z * ' m Z m i  = K p Z S ' l  

where K = (1 - 1/8a). Whilst (3a)  is trivial, (36) is decidedly not so but is extremely 
restrictive for N > 2. We turn to the solution of (36) for various N > 2 shortly, but 
note especially that for N = 2 we always have 

(4a) z'i = E iiz 

with & l 2  = +1, = -1, and (36) then becomes 

( 5 )  2 -121 = K p z  

which would be a massless condition in d = 6 if K = 1. 
For general N we may use the number K determined by (36) to give 

c, = w, + [ 8 ( K  - l)]-'K, + [ 4 p 2 ( K  - l)]-'J,  (6 )  

where ( K  - 1) in (6 )  takes the value ( N - * Z * " Z m 1 - p 2 ) ( p 2 ) - ' .  We note that this 
solution only exists for K # 1;  which we will assume in this section. We term this the 
non-degenerate case, whilst we will consider the degenerate case of K = 1 in 9 3. For 
the former case, C2 = C,C' will be a Casimir of the algebra (P,, J,,, Sa+, S a - / ) .  
Furthermore, in the rest frame P,  = (M, 0) we can show, after further algebra, that 
Ci satisfies the SU(2) algebra. Thus C2 will take the values p z Y (  Y + 1) for Y = 0, 1, 
1, 1 .  . . . For 2'' = 0 the value of C, in (6 )  reduces to that in Taylor 1982b, with 
J, = 0 = K .  We have thus a suitable generalisation of superspin to the central charge 
situation (modulo internal symmetries) with an identical superspin spectrum to the 
non-central charge case. 

A conceptual problem arises when we turn to define the ifiternal symmetry of the 
algebra (1). This is because the 2" are operators without fixed values. Thus the 2'' 
can define different directions in GL(N, C) corresponding to their value on different 
irreps. This situation has been analysed elsewhere (Ferrara and Savoy 1982) by means 
of a mapping to a canonical form of Z", but we cannot perform that here due to the 
operator character of 2';; such a canonical approach is only valid for on-shell rep- 
resentations. However, we may use (36) to define a pseudo-symplectic metric flii by 

I 

(7a 1 0'' = zij/ J2 
K P  

where we only consider K # 0. Then (36) may be rewritten as 
n*iinik = 6 i k  
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and so we may take a*" as the lowered symplectic metric Rij. Since R" is an operator 
we do not have a unique symplectic symmetry, but only the intersection of the 
symplectic groups USp(N) for the various numerical matrices that R" may become 
on given representations. This intersection may even be null, as in the case of five 
or more central charges (in different irreps) for N = 4, or six or more central charges 
for N = 8. 

We may now define the pseudo-symplectic generators A," with 

(A,")? =A,' (8a  ) 

[A,",A,"]-=i(S,",A,'-S,'A," +Rs"RrIA,'-R,,R"A~) (86 1 
[A,", Sa+' ] -  =@,'Sa+' -flS'i lm,.Sa+m). (8C) 

We note that C, defined in (6 )  is invariant under this pseudo-symplectic group. 
We now wish to extend A," to operators T," in a similar manner to that of W, to 

C, so that T," commutes with S,+ and the invariant trace of powers of T," will 
then give the pseudo-symplectic group generators in an identical fashion to that for 
9" without central charges. The appropriate pseudo-symplectic Hermitian tensors 
we may add to A," are 

(9a 1 

I 

U,' = i(S+'ps-, + 2p26,2) 

v," = i(S+sS+mZ*m' - S - , S - ~ Z ~ ' )  
w," = iZ*m(S+nps-m + 2 p Z S m n ) Z m s .  

Then we find that the unique linear combination of A,", U,", V," and W," which 
commutes with S,, is 

(10) 

We again see that T," is only properly defined for K # 1, though we will prove shortly 
that its value as K + 1 allows us to discuss the degenerate case most satisfactorily. We 
may also calculate [T,", T,"] and find, after some algebra, that is has the value (8b). 
Thus the powers 

I 

T," =A,' + [ 2 p 2 ( ~  - l)]-'[-U," + V," + ( K P * ) - ~  W,']. 

T, = ( Trlr2Trzr3 . . . Trnrl) (11) 
form the usual Casimirs of the pseudo-symplectic symmetry. We thus see that all the 
usual Casimirs of the non-central charge SUSY algebra may be extended to the 
non-degenerate case. We have to remember, however, that the final symplectic 
symmetry is obtained by a suitable intersection of the symplectic symmetries of 
different representations. 

Let us consider this in a little detail for N = 4. In that case we may take the six 
real generators of SU(4) as the real 4 X 4 antisymmetric matricescu", pi' with [a/, P m ] -  = 
0,  alam = - E f m n a n ,  Pdm = -Elm,@,,, P I = a I =  -1 (1 s 1, m, n s 3).  We may write 

(12) 

We may take representations with an increasing number of the set (2,Z') non-zero. 
The symplectic symmetry has symmetric generators anticommuting with 2'' and 
antisymmetric generators commuting with 2". This is because if M is an infinitesimal 
matrix the tranformation Sa++(l +M)S ,+  leaves ( l b )  unchanged provided (1 + 
M ) Z (  1 +M)= = 2, or MZ = -ZMT. Thus if M = MT then [M, 21, = 0 and if M = 

2 2  

zii=z .aii+zt.piJ. 
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-MT,  [M, 21- = 0. Along the direction Z1 the ten USp(4) generators are 

(alp p ;  a2P, a3p) (13a) 

where we have divided the set into antisymmetric and symmetric ones respectively. 
Similarly along Z 2 ,  Z3, Zll, Z I 2 ,  Z13 the generators are respectively 

(a2,p;alp,a3p); (a3,p;alp, a2p); (pl,a;pZa,p3a); 
(p2, a; pia, p3a); (p39 a; @la, p2a) .  (136) 

If two different irreps are present with different directions for 2’’ then the total 
symmetry will be generated by the intersection of the sets in (13a) and (13b). Thus 
if there are central charges Z1 and Z 2  the common generators are (0 ;  a3p) with group 
USp(2) x USp(2); if there are three central charges the common generators are (01, 
generating SU(2). The chain of symmetries is, for increasing numbers of central 
charges, 

SU(4) = USp(4) = USp(2) x USp(2) 3 USp(2) = U(1) =J 0 (14) 

where the first group in (14) is the symmetry with no central charges and the last with 
five or six. A similar situation occurs for N = 8 and higher N. 

Before we consider such values of N let us analyse the condition (3b) for general 
N. We have already remarked that for N = 2 (3b) reduces to ( 5 ) .  For N = 4 we may 
use (12) so that the LHS of (36) becomes 

Z T Z m  talam)”+Z;*Zh ( ~ l p m ) ”  + (zTZ~ + z / Z ~  ) ( ( ~ 2 ~ m ) l ’ *  

zT =z/, z;* = -2; or zT =-z1, z;* =z ;  (12a) 

Then (3b) is satisfied if either 

and in either case we need 
3 

(ZTZ, +z;*z;) = - K p 2  
1 = 1  

In either of the cases (12a) there is a maximum of six real central charges and if 
normalised by K - ” ~  and with inclusion of the four original space-time variables they 
satisfy the massless wave equation in up to ten dimensions. That N = 4 supersymmetry 
can arise from simple supersymmetry in d = 10 is well known. What we have shown 
here is that in order for there to be a suitable superspin operator in four dimensions, 
with the properties it possesses without central charges, there can be at most six such 
extra dimensions. 

A similar situation arises for N = 8. For that we can introduce a set of matrices 
TI similar to the a and p of N = 4, as the generators of the seven-dimensional Clifford 
algebra with 

( 1 3 ~ )  

with which we include the 21 generators [T,, rm]- = rlm of SO(7). The general form 
of the central charge matrix is thus 

[ri, rm I+ = --2S/m 
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The condition (36) requires that 

Zfm = 0 Zf* = *Zl (13e) 
giving a maximum number of seven central charges; this corresponds to the well 
known seven extra dimensions for N = 8 SGR. The chain corresponding to (14) for 
N = 8 i s  

(14a) 

The solution of (36) for general N is not known, though it appears to be related to 
the problem of sums of squares (Taussky 1970). 

SU(8) 3 USp(8) 3 USp(4) x USp(4) 3 SU(2) 3 U( 1) 3 0. 

3. Casimirs in the degenerate case 

We now turn to the case K = 1 for which the values of C, of (6) and Ts of (10) appear 
to become singular. The way to deal with this singularity can be seen if we rewrite 
TS as 
T,' =A," + [ i / 2p2(~  - l)][S+s((s+mz*mr -as-,) + ( K P ' ) - ~ Z * ' ~ Z ~ ~ ( S + ~ ~ ?  -z"'S-~)s-,]. 

(15) 
For T," to have a finite limit as K + 1 we must require the vanishing of the terms in 
parentheses in (15), and so reach the condition 

p s - ,  -S+mZ*mr = 0. (16) 
Condition (16) takes the form of a Dirac equation with 'mass' -Z*. When (16) and 
its complex conjugate are satisfied then K = 1 and C, of (6) and T,' of (10) reduce to 

C, = W, + (1/8p2)S+'y~,pS+mZ*'m ( 1 7 ~ )  

T; =A," + ( i / 2 p * ) S + ' ~ + ~ ~ * ~ ' .  (176) 
In the rest frame C still satisfies an SU(2) algebra and TS generates USp(N). 

The condition K = 1 and the related Dirac condition (16) now become constraints 
on the algebra which require some discussion. For K # 1 the expressions (6) and (10) 
are valid without further restriction. They thus parametrise representations of the 
SUSY algebra (1) in the same way as for the non-central charge case. However, the 
degenerate case has fewer elements when (16) is used. Since K = 1 arises from (16) 
this latter is the sole independent constraint. It states that we can replace S - ,  by 
p-lS+mZ*mr, thus leaving only the independent elements S+'. Moreover, it is straight- 
forward to prove that ( l a )  arises from (16) and (16). Thus the Fermi part of the 
SUSY algebra has been reduced to half its original size by the imposition of the 
constraint (16). 

The use of the Dirac constraint in this way allows us to extend the analysis of the 
spin content of on-shell irreps to the off-shell situation. This is important for the 
construction of field theories incorporating these irreps, such as the cases of N = 2 
and 4 SYM and N 2 2 SGR. The most essential feature of 'spin reduction'-the reduction 
of the maximum PoincarC spin in any irrep to half of that for ,9" without central 
charges (for even N)-occurs  in the degenerate central charge case. That is because 
the reduction of the number of Fermi generators decreases by one half the number 
of available fermion creation operators. On-mass-shell analysis (Ferrara and Savoy 
1982) shows that this does indeed occur. The general analysis of irreps using basis 
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functions (Bufton and Taylor 1982a) is thus expected to give only half the maximal 
spin in any irrep compared with the non-degenerate case. We will see this in more 
detail shortly when we consider superfield representations. 

Before we turn to this we must reconsider the Dirac condition (16) further. For 
central charges satisfying (36) we can write (as discussed at the end of § 2) 

where r l  belong to a suitable Clifford algebra, with real Xl, and (36) becomes, for K = 1, 
D 

1=1 
1 x; = - p 2 .  

This is the massless wave equation in (4+D) dimensions in the representation Xl = 
a/ax I .  Masslessness is known to reduce the dimensions of supersymmetry irreps, and 
so the massless condition (19) may be regarded as the underlying reason for spin 
reduction. As we have already remarked, spin reduction is the only presently known 
way of achieving off -mass-shell models of N 3 3 SGRS and N = 4 S Y M ,  so that massless- 
ness in higher dimensions is clearly of importance for such theories. 

4. Superfields in the degenerate case 

Superfields provide a highly compact method to describe representations of N - S U S Y ,  
especially for higher N.  However, they are reducible and since they contain irreps 
unwanted for the construction of N-SGRS and N - S Y M S  it is necessary to impose 
constraints on the superfields (SFS) to exclude the unwanted irreps. The ultimate goal 
is to construct an unconstrained SF form of the above theories, where the unwanted 
modes correspond to gauge degrees of freedom; such an aim seems achievable only 
through constrained SFS as an intermediate step. 

To determine constraints on SFS which give solely irreps, let us start by introducing 
our superspace with Bose variables xw, zii, zim* and Fermi variables e,-. Then 
we may represent S a + ,  Sa- ,  satisfying (1) as 

sa+ = i(a/as"+l + i(ae-l)a+ + ea+, a/az,,) 

P, = i alax" 
T," = i(&+r a/at?+, - t?-' ala&-') -i(a,,,,a"&+l ala&+, - amsarlt?-l ala&-") 
The Dirac term on the LHS of (16) can then be evaluated to be 

1 

I 

(20a 1 
= -i(a/a~*-'+i(ae+,),_+e,-" a /azL)  (206) 

(20c 1 
( 2 0 4  

I 

J," = x ~ , ~ , ,  - ( & + l ~ , ,  ala&+' + &-'(+,, ala&-') 

(ps-l)o,+-sa+mz*ml = - ipa+P-(a/a&P-'  + ( p - l ) p - y + z * m l  alas",) (21) 

Thus every superfield @ ( x w ,  zijr 
be written as 

e+[, e-") has to satisfy the condition (16), so can 

(22) 

We must interpret (22) carefully, however, since the differential operators a, and 
a/az*l, are contained in the SF @. We define (22) by the expansion of 0 in powers 

@(xP, zii, zij*, e+l -z*'mp-le-m). 
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of the Fermi variable 

CL+/ = e+, -z*'"p-'e-". 
Thus we have the definition 

@ b y  2 ,  2 *, $+) = c $+"& (x, z ,  z "1 (241 
where @+" is a symbolic representation of n powers of $+ and the coefficient functions 
4" involve appropriate Fermi variables to saturate those on @+". We see immediately 
that, due to the chiral nature of $+, there are only half as many spinor labels on #J" 
as if $+ had both chiralities. In other words, the Dirac condition (16) has reduced 
the number of spins available in any (SF) representation by one half, so spin reduction 
has occurred explicitly. 

It is now straightforward to extend the 'super-tableau calculus' (Howe et a1 
1981a, b) to this degenerate central charge case. The resulting formalism is simpler 
than for 2'' = 0 due to the Dirac condition. This means that we may dispense, for 
example, with D,-I in preference to D,+ , and so with boxes with crosses in them; 
only boxes with dots in them are needed to describe component fields of constrained 
superfields. 

In the case of N = 2  the fundamental multiplet with Y=O is not contained in a 
scalar superfield, since from the theory of irreps of N = 1 SUSY (to which the N = 2 
case reduces in the spin-reducing case) the Y = 0 irrep will be an SU(2) doublet in 
such a superfield. The Y = 0 irrep must thus be in a doublet superfield ai, represented 
by a single box U, as is known (Sohnius 1978). The constraint which singles out the 
Y = 0 irrep from the Y = t irrep in a' can be seer? to be 

I 

m =o .  (25) 
That this is so follows immediately from the derivation from (25) of the component 
fields in @' as 

(where we mean by the tableaux on the RFIS of (26) that the SF given there is evaluated 
at B = z = 0, and we consider only one 2, for simplicity). Since (26) agrees with the 
known component fields of the Y = 0 irrep, this justifies the constraint (25). 

A similar result follows for N =4, where the constrained SF must be an USp(4) 

5-plet Qi', represented by 8. The corresponding constraint singling out the Y = 0 

fundamental irrep is 

p = 0  (27) 

and the components will be 

(28) 
Since the highest component field has integer spin it is possible to apply a reality 
condition so that h i  =& and Ai', c$", A,, and V,, are real. 
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We may extend the above to N = 6 with a 14-plet SF @‘Ik,  with the constraint 
singling out the Y = 0 fundamental irrep being 

The component content of the Y = 0 irrep is 

U 

U 

where Aiik and diik are in the 14‘-dimensional, rLij and A i ,  the 14-dimensional, AWi and 
VFi the six-dimensional and $,,, A,, in the one-dimensional irreps of USp(4) respec- 
tively. 

with the constraint for the For N = 8 the corresponding SF is the 42-plet SF 

fundamental irrep being 

p 0  

and the component content 

where a reality condition has already been applied to (32) so that all fermions are 
Majorana and all bosons are real. We may clearly extend (25), (27), (29) and (31) 
to arbitrary N = 2M, with the SF @ i l ’ ” i M  described by the tableau } M and constraint 

M l r = O .  (33) 

The component content will be an obvious generalisation of (26), (28), (30) and (32), 
with a reality condition being possible for even M. 

We may also consider constraints on other superfields to obtain irreps. Thus for 
N = 2 we may take the constraint on the scalar SF @ with 

m =o .  (34) 



Of-s hell supers y m metr y reps with central c h urges 1015 

The component fields will thus be 

A = o  F = Z .  A @ = B  vy=zB (35) 

where we have applied an obvious reality condition. (35) is the Y = f gauge supermulti- 
plet with central charge used to construct Abelian N = 2 SYM (Sohnius et a1 1981, 
Taylor 1980). The other irrep in @ has Y = 0 and is defined by the constraint 

H = O  

with components 
A = o  F = Z o  *i = a Aj =Za A . .  = m B..  = zm 

(37) 

where Aij and Bij  are symmetric in i, j .  The content of (37) is that of the Y = 0 
SU(2)-doublet, as obtained from (26) by addition of a further SU(2) index and 
reduction of the scalar fields into an SU(2) scalar and triplet. We may thus write 

@ = @0,2 + @$,l (38) 

where a(",,,,) denotes an irrep with Y = n and SU(2) dimension m. Similar analysis 
may be given for other superfields for N = 2 and for other N. 

We may extend the super-tableaux calculus to the case of more than one central 
charge. This follows rather straightforwardly following the reduction of the symmetry 
along the lines of (14) and (14a). Thus for N = 4 with two central charges the basic 
superfield is in the (2, 2) representation which we can denote by (0, U). The 
appropriate constraint to single out the Y = 0 fundamental irrep is 

(m,o)=(a ,  C a ) = O  (39) 

and the components will be constructed from the scalars (U, U), spinors 11, 0 1 and 
[U, 6 1 and scalars and vectors 1 B, 1. The condition (19) does not prevent an infinite 
number of component multiplets from arising (Sohnius et a1 1981), but these may be 
removed by a subsidiary condition to give quadrupling of the above components as 
an irreducible representation containing one arbitrary parameter. This irrep appears 
necessary to construct an off-shell version of N = 4 SGR (Bufton and Taylor 1983b). 
The three central charge situation can be handled similarly, with the fundamental 
irrep contained in the triplet SF of SU(2) with constraint L I D  = 0. The resulting 
components may again be read off by the super-tableaux,with smallest finite irrep 
being composed of eight duplicates of the components given directly by the super- 
tableaux. 

The reduction of irreps to contain only a finite number of components can be seen 
in terms of the general SF solution of (36) and (16) in the degenerate case K = 1. This 
can be written as 
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where C is some contour in the i N  (N - 1) complex dimensional space of antisymmetric 
matrices A. For N = 2, for example, this reduces to 

(41) 1 2 *  lcdA exp(Az + A -  P z ) A b ,  A ,  & + I @ ) ) .  

I Since the action of Sa+ of (20a) on (41) (or more generally (40)) is local in A we 
may choose a single value of A to obtain an irreducible representation. This corres- 
ponds in N = 2 with z = $(x, + ix6) to 8: = a m ,  82 = (1 - a)O, and hence reduces the 
component content to a finite number. 

5. Prepotentials 

It is often stated that it is not possible to use superfields carrying central charges in 
the quantum context since they are constrained in such a way as to preclude the 
standard quantisation procedures. We have seen in 0 4 that we can solve the Dirac 
condition (16) by means of the Fermi variable (23). It may be that this solution will 
prove difficult to non-linearise due to the non-locality explicitly present in the term 
involving p-', but that can only be determined by further more detailed investigation. 
We may also solve the wave equation (3b) in terms of superfields on four-dimensional 
space-time. Again we may have non-linearisation problems here, but again defer this 
to a more general analysis elsewhere. Our concern now is the discovery of prepotentials 
for the solution of the constraints of form (33), (34) or (36). We will only consider 
the N = 2 cases (25) and (34) here since these are indicative of the form of solution 
in the other cases. 

We will use the method of solution for 2 = 0 where the prepotential is expected 
to have the same spin and SU(2) transformations as the component field of highest 
(mass) dimension. The prepotential solution of (34) should therefore be an antisym- 
metric self-dual or anti-self-dual tensor Vsv, We may expect the solution to be of 
the form 

A straightforward use of ( l b )  allows us to show that (42) does indeed satisfy (34). 
We now turn to the fundamental hypermultiplet defined by (25). As before we 

use the component of highest dimension, which is a spinor, so expect a solution to 
(25) of the form 

@ =  (D+kcsD+k)VsY. (42) 

Qi =Daf iAa+.  (43) 

The constraint (25) now becomes that of (34), so that if we use (42) our solution to 
(25) can be written as 

(44) ' - a + i  - & 
@' =D (D+ ( T r D + k ) ( ( T r y x ) a + -  

We have thus been able to obtain prepotentials in both cases (25) and (34) along the 
lines expected in the non-central charge situation. 

6. Discussion 

We have shown that many of the features of non-central charge supersymmetry persist 
in the central charge situation. This may allow us to use central charge irreps more 
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effectively to evade the no-go theorems (Rivelles and Taylor 1981, 1983a, Taylor 
1982a). Before this can be done we must still resolve the question as to whether the 
remaining constraints, most specifically the Dirac constraint (16), do not prevent 
satisfactory use of the superfield framework for super-quantisation. For this we need 
to develop integration over superspace for our central charge irreps instead of using 
Lagrangians only at 0 = 0 (Sohnius 1978, Taylor 1980). This may now be possible, 
even in the N = 2 case, in terms of the unconstrained prepotentials of 5 5 .  
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